Differential Equations

Homework 5
Due Feb. 28, 2024, 9:59 am

Note:

- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your HW.
- Several random problems will be graded (1 point each).

1. Sketch (by hands) slope field of

$$
\frac{\partial y}{\partial t}=y
$$

2. Sketch (by hands) slope field of

$$
\frac{\partial p}{\partial t}=p(10-p)
$$

3. Separate variables and use partial fraction to solve the initial value problem

$$
\begin{gathered}
\frac{d x}{d t}=x-x^{2}, x(0)=2 \\
\frac{1}{x(1-x)} d x=d t \\
\int \frac{1}{x(1-x)} d x=\int 1 d t+C
\end{gathered}
$$

Partial fraction

$$
\begin{gathered}
\frac{1}{x(1-x)}=\frac{A}{x}+\frac{B}{1-x}=\frac{A(1-x)+B x}{x(1-x)}=\frac{A+(B-A) x}{x(1-x)} \\
A=1, B-A=0, \rightarrow A=1, B=1 \\
\frac{1}{x(1-x)}=\frac{1}{x}+\frac{1}{1-x}
\end{gathered}
$$

Thus

$$
\int \frac{1}{x(1-x)} d x=\int 1 d t+C
$$

becomes

$$
\begin{gathered}
\int\left(\frac{1}{x}+\frac{1}{1-x}\right) d x=t+C \\
\ln (x)-\ln (1-x)=t+C \rightarrow \ln \frac{x}{1-x}=t+C \\
\frac{x}{1-x}=C e^{t} \\
\frac{2}{1-2}=C e^{0} \rightarrow C=-2 \\
\frac{x}{1-x}=-2 e^{t} \\
x=-2 e^{t}(1-x) \rightarrow x-2 e^{t} x=-2 e^{t} \rightarrow\left(1-2 e^{t}\right) x=-2 e^{t} \\
x=\frac{-2 e^{t}}{1-2 e^{t}}=\frac{-2}{-2+e^{-t}}=\frac{2}{2-e^{-t}}
\end{gathered}
$$

4. Separate variables and use partial fraction to solve the initial value problem

$$
\begin{gathered}
\frac{d x}{d t}=3 x(5-x), x(0)=8 \\
\frac{1}{x(5-x)} d x=3 d t \\
\int \frac{1}{x(5-x)} d x=\int 3 d t+C
\end{gathered}
$$

Partial fraction

$$
\begin{gathered}
\frac{1}{5} \int\left(\frac{1}{x}+\frac{1}{5-x}\right) d x=3 t+C \\
\ln (x)-\ln (5-x)=15 t+C \\
\ln \frac{x}{5-x}=15 t+C \rightarrow \frac{x}{5-x}=C e^{15 t} \\
\frac{8}{5-8}=C e^{15(0)}=C \rightarrow C=-\frac{8}{3} \\
\frac{x}{5-x}=-\frac{8}{3} e^{15 t} \\
-3 x=(5-x) 8 e^{15 t} \rightarrow-3 x+8 x e^{15 t}=40 e^{15 t} \\
x\left(8 e^{15 t}-3\right)=40 e^{15 t} \rightarrow x(t)=\frac{40 e^{15 t}}{8 e^{15 t}-3}=\frac{40}{8-3 e^{-15 t}}
\end{gathered}
$$

5. Separate variables and use partial fraction to solve the initial value problem

$$
\begin{gathered}
\frac{d x}{d t}=3 x(x-5), x(0)=2 \\
\frac{1}{x(x-5)} d x=3 d t \\
\int \frac{1}{x(x-5)} d x=\int 3 d t+C
\end{gathered}
$$

Partial fraction

$$
\begin{aligned}
\frac{1}{x(x-5)}= & \frac{A}{x}+\frac{B}{x-5}=\frac{A(x-5)+B x}{x(x-5)}=\frac{-5 A+(A+B) x}{x(x-5)} \\
& -5 A=1, A+B=0 \rightarrow A=-\frac{1}{5}, B=\frac{1}{5} \\
& \frac{1}{x(x-5)}=\frac{-\frac{1}{5}}{x}+\frac{\frac{1}{5}}{x-5}=-\frac{1}{5}\left(\frac{1}{x}-\frac{1}{x-5}\right)
\end{aligned}
$$

Thus

$$
\int \frac{1}{x(x-5)} d x=\int 3 d t+C
$$

becomes

$$
\begin{gathered}
-\frac{1}{5} \int\left(\frac{1}{x}-\frac{1}{x-5}\right) d x=3 t+C \\
\ln (x)-\ln (x-5)=-15 t+C \rightarrow \ln \frac{x}{x-5}=-15 t+C \\
\frac{x}{x-5}=C e^{-15 t} \\
\frac{2}{2-5}=C e^{-15(0)}=C \rightarrow C=-\frac{2}{3} \\
\frac{x}{x-5}=-\frac{2}{3} e^{-15 t} \\
3 x=-2(x-5) e^{-15 t} \rightarrow 3 x+2 x e^{-15 t}=10 e^{-15 t} \\
x=\frac{10 e^{-15 t}}{3+2 e^{-15 t}}=\frac{10}{2+3 e^{15 t}}
\end{gathered}
$$

6. Suppose that the fish population $P(t)$ in a lake is attacked by a disease at time $t=0$, with the result that the fish cease to produce (so that the birth rate is $\beta=0$) and the death rate δ (deaths per week per fish) is $k \frac{1}{\sqrt{P}}$. If there were initially 900 fish $(P(0)=900)$ in the lake and 441 were left after 6 weeks $(P(6)=441)$, how long did it take all the fish in the lake to die?
Birth rate : $\beta(t)=0$, Death rate : $\delta(t)=k \frac{1}{\sqrt{P}}$

$$
\begin{gathered}
\frac{d P}{d t}=\left(0-k \frac{1}{\sqrt{P}}\right) P, P(0)=900 \\
\frac{d P}{d t}=-k \sqrt{P} \\
\frac{1}{\sqrt{P}} d P=-k d t \\
\int \frac{1}{\sqrt{P}} d P=\int-k d t+C \\
2 \sqrt{P}=-k t+C \\
2 \sqrt{900}=-k(0)+C \rightarrow C=60 \\
2 \sqrt{P}=-k t+60 \\
2 \sqrt{441}=-6 k+60 \rightarrow 42=-6 k+60 \rightarrow k=3 \\
2 \sqrt{P}=-3 t+60 \\
P=0 \\
0=-3 t+60 \rightarrow t=20 \text { weeks }
\end{gathered}
$$

7. Suppose that the number of alligator $x(t)$ (with t in months) of alligators in a swamp satisfies the differential equation

$$
\frac{d x}{d t}=0.0001 x^{2}-0.01 x
$$

(a) If initially there are 25 alligators in the swamp, solve the differential equation to determine what happens to the alligator population in the long run $(t \rightarrow \infty)$

$$
\begin{gathered}
\frac{d x}{d t}=x(0.0001 x-0.01)=0.0001 x(x-100), \quad x(0)=25 \\
\frac{1}{x(x-100)} d x=0.0001 d t
\end{gathered}
$$

By integrating both sides

$$
\begin{gathered}
\left(\frac{1}{x}-\frac{1}{x-100}\right) d x=-0.01 d t \\
\ln \frac{x}{x-100}=-0.01 t+C \\
\rightarrow \frac{x}{x-100}=C e^{-0.01 t}
\end{gathered}
$$

Since $x(0)=25 \quad($ when $t=0, x=25)$

$$
\begin{gathered}
\frac{25}{25-100}=C e^{-0.01(0)} \\
\frac{25}{-75}=C \rightarrow C=-\frac{1}{3} \\
\frac{x}{x-100}=-\frac{e^{-0.01 t}}{3} \\
-3 x=(x-100) e^{-0.01 t} \\
3 x+x e^{-0.01 t}=100 e^{-0.01 t} \\
x(t)=\frac{100 e^{-0.01 t}}{3+e^{-0.01 t}}=\frac{100}{3 e^{0.01 t}+1} \\
x(t) \rightarrow 0 \text { as } t \rightarrow \infty
\end{gathered}
$$

(b) Repeat part (a), except with 150 alligators initially.

$$
\ln \frac{x}{x-100}=-0.01 t+C \rightarrow \frac{x}{x-100}=C e^{-0.01 t}
$$

Since $x(0)=150($ when $t=0, x=150)$

$$
\begin{gathered}
\frac{150}{150-100}=C e^{-0.01(0)} \rightarrow C=3 \\
\frac{x}{x-100}=3 e^{-0.01 t} \\
x=3(x-100) e^{-0.01 t} \\
x-3 x e^{-0.01 t}=-300 e^{-0.01 t} \\
x=\frac{-300 e^{-0.01 t}}{1-3 e^{-0.01 t}}
\end{gathered}
$$

When

$$
1-3 e^{-0.01 t}=0 \rightarrow e^{-0.01 t}=\frac{1}{3} \rightarrow t=-\frac{\ln \frac{1}{3}}{0.01} \approx 109.8612 \text { months }
$$

the population explodes.

